Generalized Vershik’s Theorem and Generic Metric Structures

نویسنده

  • ALEXANDER USVYATSOV
چکیده

We compare three notions of genericity of separable metric structures. Our analysis provides a general model theoretic technique of showing that structures are generic in discriptive set theoretic (topological) sense and in measure theoretic sense. In particular, it gives a new perspective on Vershik’s theorems on genericity and randomness of Urysohn’s space among separable metric spaces.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generic Separable Metric Structures

We compare three notions of genericity of separable metric structures. Our analysis provides a general model theoretic technique of showing that structures are generic in descriptive set theoretic (topological) sense and in measure theoretic sense. In particular, it gives a new perspective on Vershik’s theorems on genericity and randomness of Urysohn’s space among separable metric spaces.

متن کامل

FIXED POINT THEOREM OF KANNAN-TYPE MAPPINGS IN GENERALIZED FUZZY METRIC SPACES

Binayak et al in [1] proved a fixed point of generalized Kannan type-mappings in generalized Menger spaces. In this paper we extend gen- eralized Kannan-type mappings in generalized fuzzy metric spaces. Then we prove a fixed point theorem of this kind of mapping in generalized fuzzy metric spaces. Finally we present an example of our main result.

متن کامل

Generalized multivalued $F$-contractions on non-complete metric spaces

In this paper, we explain a new generalized contractive condition for multivalued mappings and prove a fixed point theorem in metric spaces (not necessary complete) which extends some well-known results in the literature. Finally, as an application, we prove that a multivalued function satisfying a general linear functional inclusion admits a unique selection fulfilling the corresp...

متن کامل

Suzuki-type fixed point theorems for generalized contractive mappings‎ ‎that characterize metric completeness

‎Inspired by the work of Suzuki in‎ ‎[T. Suzuki‎, ‎A generalized Banach contraction principle that characterizes metric completeness‎, Proc‎. ‎Amer‎. ‎Math‎. ‎Soc. ‎136 (2008)‎, ‎1861--1869]‎, ‎we prove a fixed point theorem for contractive mappings‎ ‎that generalizes a theorem of Geraghty in [M.A‎. ‎Geraghty‎, ‎On contractive mappings‎, ‎Proc‎. ‎Amer‎. ‎Math‎. ‎Soc., ‎40 (1973)‎, ‎604--608]‎an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007